
PHYSICAL REVIEW E JULY 2000VOLUME 62, NUMBER 1
Intermingled basins due to finite accuracy
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We investigate numerically first a chaotic map interrupted by two small neighborhoods, each containing an
attracting point, and secondly a periodically tilted box within which disorderly colliding disks can reach
different attracting configurations, due to dissipation. For finite, arbitrarily small accuracy, both systems have
basins of attraction that are indistinguishable from intermingled basins: any neighborhood of a point in phase
space leading to one attractor contains points leading to the other attractor. A bifurcation destabilizing the fixed
points or the disk configurations causes on-off intermittency; the disks then alternate between a ‘‘frozen’’ and
a gaslike state.

PACS number~s!: 05.45.2a, 68.35.Rh, 47.52.1j, 02.70.Ns
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Riddled and intermingled basins received considerable
tention in the last few years@1–14#. Such basins impose
serious restrictions on predictability. In fact, an increase
accuracy of the initial conditions is not of much help
improving predictions, as compared to the less severe cha
systems, in which predictions can be improved by decrea
initial errors. Moreover, the unpredictability resulting fro
riddled or intermingled basins affects our knowledge of
qualitative fate, i.e., we cannot predict the attractor~it may
be periodic or chaotic!, while the unpredictability in a cha
otic system refers only to the knowledge of the position
phase space within the chaotic attactor.

Given the basinsB1 andB2 of two coexisting attractors
B1 is said to be riddled with respect toB2 if the probability
of reachingB1 is positive and if within any neighborhood o
any point ofB1 the probability of reachingB2 is also posi-
tive. This means that an arbitrarily small perturbation o
point leading to one attractor may lead to the other attrac
This property has been found for a number of time-discr
systems@2,5–7#, electronic circuits@8,9#, differential equa-
tions describing a point mass in a potential@1,3,4#, coupled
Roessler systems@11#, or coupled elastic arches@10#. As a
special case, the basins are said to be intermingled ifB1 is
riddled with respect toB2, andB2 is riddled with respect to
B1 @2–4#.

In a recent report, it was shown that, for chaotic tra
sients, appearing close to a so-called boundary crisis, t
exist time-dependent riddledlike basins for finite, arbitrar
small accuracy; this apparent riddling is indistinguisha
from riddled basins owing to the unavoidable limitations
computational or experimental accuracy@12#. In that report,
however, riddling appears only if one evaluates the sys
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for a finite time since the basins are transients and th
exists only one attractor fort→`. In contrast, we show in
the present work that there exist systems for which ridd
basins caused by finite accuracy are not a transient phen
enon; in fact, riddling can be quantified for two attracto
coexisting att→`. Moreover, the basins reported now a
not only riddled, as in Ref.@12#, but intermingled. It is also
interesting that the coexisting attractors in the present w
are fixed points or periodic orbits, in contrast to previo
works in which at least one attractor is chaotic~an exception
involving nonchaotic attractors, as in our systems, is giv
by a recent report@6# on riddling of a mixed type, i.e.,
riddled basins intertwined with open sets!.

A quantitative description of riddling is possible with th
so-called uncertainty exponenta @3,5,7,10,12–14#. a is de-
termined by fitting the scaling lawf (e)}ea, where f (e) is
the fraction of pairs (xW k ,xW k1eW r) such thatxW k andxW k1eW r are
in different basins. ThexW k ,k51,2, . . . ,N are initial condi-
tions ~chosen equidistantly in this work! and theeW r are per-
turbations chosen randomly such thatueW r u is uniformly dis-
tributed within @0,e#. For riddled or intermingled basins,a
is close to zero. Examples of reported values are in the ra
0.01<a<0.03 @5,10,13#, as compared to 0.4<a<0.7 for
fractal basins@15# and a51 if the basin boundary is a
smooth curve or surface@15#.

As a simple system, chosen so as to easily understand
phenomenon, we use a map that corresponds to the log
equation except for two small intervalsI i5@Xi2d,Xi
1d#,i 51,2,d!1:

xn115H sxn1~12s!Xi if xnPI i , i 51,2

4xn~12xn! if xn P]0,1[ and xn¹I i .
~1!

For usu.1, X1 andX2 are unstable and the map is chaot
For usu<1 and starting at a pointx0¹I i , the map eventually
397 ©2000 The American Physical Society
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gets ‘‘trapped’’ into one of theI i and converges there to th
corresponding attractorXi . In this work, we setX150.2 and
X250.8. Sinced!1, the map may spend a considerab
time as a chaotic transient, which is defined by the logis
equation, before the trapping into one of theI i occurs. All
preimages ofI i , as determined by this chaotic transient, a
contained in the basin of theXi . Since the Lyapunov expo
nent of the map~1! is l51, the average length of a preim
age of theI i is d322m, wherem is the number of backward
iterations. For a calculational accuracyj ~here j510216),
the preimages of theI i will be indistinguishable from points
for m>mc5 ln(d/j)/ln(2). As an example, we now conside
d51024. In that case,mc541, well below the average num
ber of iterations needed to reach theI i by the chaotic map,
which is of the order 103. We determined the total length o
all preimages of theI i between 1 andmc backward iterations
to beL'1023. We thus conclude ford51024 that approxi-
mately 99.9% of the initial conditions consist of points fro
the numerical point of view.

It is known that the set of all preimages of a point in ]0,@
resulting fromm→` backward iterations of the mapxn11
54xn(12xn) is dense in ]0,1@ ~see, e.g.,@16#!; thus, any
subinterval of ]0,1@ contains preimages of two arbitraril
chosen points. This property suggests~for finite m andI i , as
is our case! that the preimages ofI 1 are highly intertwined
with those ofI 2. We found numerically that this intertwining
is so strong ford51024 that successive enlargements
subintervals of ]0,1@ , as far as computational accuracy a
lowed, revealed no open subsets of the basins; we thus
tained qualitative evidence for intermingling. We show
example for the analysis of a subinterval of ]0,1@ in this case
in the upper left of Fig. 1. Note that some subsets of
displayed interval look open. However, closer inspect
showed that this is due to the limited number of points
amined in this interval; in fact, enlargement of these see
ingly open sets again reveals an intertwined structure
quantitative analysis yielded the upper plot at the right
Fig. 1. This plot confirms the scaling lawf (e)}ea with a
50.002560.0001 ford51024. For comparison, the lowe
plot at the right of Fig. 1 was calculated with more extend
I i , namely, with d51022. We obtainL'0.56, i.e., only
44% of the unit interval appears to have intermingled bas
starting from these basins, the mean number of iteration
well abovemc , being 48 in this case. We show part of th

FIG. 1. Right: Plot for the determination of the uncertainty e
ponent ud log10f (e)/dlog10eu with the map given by Eq.~1!, s
50. Left: Examples of basins corresponding to the plots at the r
~abscissas:a50.9, b50.901; ordinates: coexisting attractorsX1

50.2 andX250.8).
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basin at the lower left of Fig. 1. Within the open intervals
this basin, neighboring points lead to the same attractor,
decreasingf (e). However, fore*1023, the evaluated point
pairs are sufficiently often in different basins, again yieldi
a'0, i.e., apparent intermingling. Note thate corresponds
here to the resolution of the procedure. This resolution
also be modified by changing the computational accuracy
for example,d51024, as in the upper plots of Fig. 1, bu
using an accuracy of 10232 instead of 10216, thena'0 for
e*10220, but a.0 for e,10220.

The phenomena just described apply forusu<1. If usu
.1, then theXi are unstable and the iterates are repelled
of the intervalsI i . However, ifusu21 is sufficiently close to
zero, the iterates may spend considerable time interval
durationt in the I i , with t→` for usu→1. Note that exit
from theI i is described by (xn112Xi)5s(xn2Xi). Thus, if
the I i is entered at the iterationk and the lifetime withinI i is
t, then (xk1t2Xi)5st(xk2Xi). This equation, along with
the condition for exit (uxk1t212Xi u,d,uxk1t2Xi u) and
the assumption that the probability of reaching anyxkPI i is
p(xk)'const ~since I i!1), yields the scaling lawp(t)
}s2t for t→`; p(t) is the probability for exit withint
iterations. This scaling is not comparable to any of t
known laws for intermittency~see@18#!, the discrepancy be
ing due to the discontinuities of our map.

We consider now a physical system, namely, a~two-
dimensional! square box containingn disks ~radiusR) and
oscillating around a pivot P, as illustrated in the upper left
Fig. 2. In the present work, we considern51,2,3, and 4.
The length of the edge of the box was set to 2R(n11). This
choice resulted from the consideration that a smaller b
considerably restricts the movement of the disks, while
larger box diminishes the number of collisions and thus
duces the disordering that is necessary for intermingli
This disordering can still be accomplished with longer edg
by increasing the input power; however, this requires unr
sonably long computing times.

The straight line passing through P and the top poin
describes an anglea5A cos(2pft) with a vertical line pass-
ing trough P. Due to dissipation, the disks may come to r

t
FIG. 2. Upper left: Scheme of the mechanical device; the po

T oscillates around the pivot P between the dashed linesa
5A cos(2pft). Smaller squares: possible stable configurations w
one disk~top row!, two disks~second row!, three disks~third row!,
and four discs~lowest row!; the disordered modes are illustrated
the right column; the other modes~periodic orbits! are denoted by
roman numerals.
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PRE 62 399INTERMINGLED BASINS DUE TO FINITE ACCURACY
at one of the configurations I, II, II* , III, IV, IV * and V
shown in Fig. 2. At sufficiently largeA or f, disorder is
maintained, as illustrated in the right column of Fig. 2.

The system illustrated in Fig. 2 was simulated using tw
dimensional molecular dynamics@17#. Each disk was de-
scribed by five independent variables: positionrW i , velocity

vW i , and magnitude of the angular velocityuvW i u. For the ma-
terial properties of the disks and the disk-disk and the d
edge interactions, we used the same parameters and
laws as in@19# and@20#. In accordance with the simulation
in those works, which were optimized so as to fit experim
tal observations, we make the following assumptions. T
radii of the disks are set here toR5531023 m and their
densityr to 2.53103 kg/m23. Two disksi and j only inter-
act if the overlapz52R2urW i2rW j u.0. The repulsive norma
force is given by

FW n
( i )5@Yj3/22gnAz~vW i2vW j !nW #nW ~2!

~Hertz theory with viscoelastic dissipation@21#! with nW

5(rW i2rW j )/urW i2rW j u. The disk stiffness is set toY
5105 kg m21/2 s22 and the damping constant tog
530 kg m21/2s21. The shear force~perpendicular tonW ) is

FW s
( i )52

vs
W

uvs
W u

min~nsuFW n
( i )u,gsuvW su!. ~3!

The first argument describes the Coulomb slidi
friction and the second one the viscous flow. The sh
velocity is vW s5vW i2vW j2@(vW i2vW j )nW #nW 1r pnW 3(vW i1vW j ). gs
520 kg s21; ns50.45. The interaction of a diski with an
edge was computed by assuming a disk placed symm
cally to i with respect to that edge. The equations w
solved by a Gear predictor-corrector algorithm@17# of sixth
order with a time step of 1025 s.

Figure 3 shows the plane defined by the control para
etersA andf. The configurations~defined in Fig. 2 and indi-
cated by roman numerals at each curve! are unstable above
the corresponding curve and stable below it. Symmetric c

FIG. 3. A ~ordinate! is the amplitude andf ~abscissa! is the
frequency of the oscillating box in the upper left of Fig. 2. T
configurations shown in Fig. 2 are stable below the curve with
corresponding roman numeral.~The curves for II and IV deviate by
less than 2% from the curves for II* and IV* , respectively.!
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figurations~obtained by interchanging left with right edge
of the box! are considered as equivalent in Figs. 2 and 3.
found that the stability curves~Fig. 3! for the configurations
IV and II are the same as those that for the configurati
IV* and II* , respectively, within an error,2%. This is due
to the fact that instability is mainly determined by growth
perturbations of the uppermost disk in the configuration, a
this disk, including a neighborhood around it, is indisti
guishable between IV and IV* , as well as between II and
II* . Above the curve marked I, disorder is obtained for a
n<4. Below the curve marked V, all configurations coex
in phase space forn51,2,3, or 4. Between the curve
marked IV and V, the configurations III and IV* ~for n
54) and the configurations II* and IV ~for n53) coexist in
phase space.

Slightly below each curve in Fig. 3, we observed lo
chaotic transients before the configuration marked at
curve was reached. This is illustrated in Fig. 4~a! and is
comparable to the behavior of the one-dimensional~1D! map
given by Eq.~1! for usu<1. In the same way as for the 1D
map, the chaotic transients here cause neighboring in
conditions to reach different attractors. This is illustrated
n54 in Figs. 5~a!, 5~b!, and 5~c! for cases~with f 53.25 Hz!
in which the configurations III and IV* coexist. The initial
conditions are set by first putting the disks in configuration
and then displacing the uppermost disk along the edge@as
given by the abscissas in Figs. 5~a!, 5~b!, and 5~c!# and per-
pendicularly to the edge~as given by the ordinates in thes
figures!. In the case of Fig. 5~a!, A is so small and thus
transient chaos is so short that the sizes of the basins are
above calculational accuracy, thus appearing as open
This is an analogous situation to that for the 1D map,
illustrated at the lower left of Fig. 1.

e

FIG. 4. Time series showing transitions between the disorde
and the stable modes for two disks~second row in Fig. 2!. f 56 Hz.
Ordinate: total kinetic energy of the disks~evaluated from the ve-
locities relative to the box!. ~a! A514.432°,t050; the parameters
are below the curve marked II in Fig. 3; after a long chaotic tra
sient, the disks stabilize into configuration II.~b!, ~c!, ~d! t05200 s;
intermittent time series for parameters above the curve marked
Fig. 3: increasingA decreases the mean lengths of time intervals
which the disks are ‘‘frozen’’ near configuration II.~b! A
514.445°; ~c! A514.455°; ~d! (Ekin'0) A514.52°.
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In the case of Fig. 5~b!, A is large enough and thus tran
sient chaos is long enough to yield basins having si
smaller than the calculational accuracy. As for the 1D m
~see the upper part of Fig. 1!, one here obtains basins th
cannot be distinguished from intermingled ones, as ill
trated qualitatively by the enlargement in Fig. 5~c!. For Fig.
5~b!, we calculated the uncertainty exponent to bea
50.003560.002 ~evaluated for nine orders of magnitud
10212R,e,1023R). We determined the maximum
Lyapunov exponentlmax ~using base 2! by averaging over
1000 chaotic transients before their breakdown into one
the stable configurations. For this, we first normalized
variables—dividing by their averages in time—and then
termined the average stretching of~periodically normalized!
distances between a reference trajectory and nearby traj
ries ~see, e.g., @18#!. We obtained lmax523.24
6 0.06 s21. This means that a perturbation having the s
of the calculational accuracy (10216) increases~on average!

FIG. 5. ~a!,~b!,~c! Basins for the configurations III~black! and
IV* ~white! of four disks~see lowest row in Fig. 2!. f 53.25 Hz.~a!
A522.25° ~open sets!. ~b! A522.5° ~intermingledlike basin!. ~c!
Enlargement of a small rectangle within~b!. ~d!,~e!,~f! Basin for
configuration II~shown black! and of its symmetric one on the le
edge~shown white!. f 53.5 Hz. ~d! A525° ~one basin consists o
isolated points within the other one!. ~e! A526.3° ~intermingledlike
basins!. ~f! Enlargement of a small rectangle within~e!.
~a!,~b!,~d!,~e! Abscissa (0,631025 m) and ordinate (0,1024 m) are
initial displacements of one disk, as described in the text.
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to 2R ~an approximate final distance in phase space tha
decisive for alternative configurations! within about 2 s. This
time is approximately five times shorter than the avera
lifetime of the chaotic transients in this case.

Figures 5~d!, 5~e!, and 5~f! correspond to cases forn52
below curve II in Fig. 3 andf 53.5 Hz. We investigate now
the basins of the two symmetric configurations of the t
disks, one at the lower right edge (IIR) and one at the lower
left edge (IIL) of the box. The initial conditions were set b
first shifting configuration IIR a distance 2R upward along
the lower right edge, and then displacing the lower d
along the edge@as given by the abscissas in Figs. 5~d!, 5~e!,
and 5~f!# and perpendicularly to the edge~as given by the
ordinates in these figures!. For the case of Fig. 5~d!, A is so
low and thus the chaotic transients so short that configura
IIR is reached for almost all initial conditions~its basin is
shown black!. The definition of riddling is not fulfilled in this
numerical analysis because the probability of reaching IIL is
indistinguishable from zero@the basin consists of the isolate
white points in Fig. 5~d!#. For the case of Fig. 5~e!, A is large
enough and thus the chaotic transients are long enoug
yield again apparent intermingling witha50.001360.001
~evaluated for 10212R,e,1023R).

Slightly above each curve in Fig. 3 we obtain intermitte
behavior, in which a chaotic, gaslike mode alternates i
disorderly way with a ‘‘frozen’’ state, the latter correspon
ing to the configuration marked on the curve. We illustra
this in Figs. 4~b!, 4~c! and 4~d! for n52. This is comparable
to the dynamics of the 1D map given by Eq.~1! for usu
.1. Due to the high degree of disorder in the chaotic bur
we could not discriminate well between low amplitudes
the chaotic regime and laminar periods. This resulted in
reliable statistical evaluations of smallt, and thus of̂ t&.
However, we could well determine the probabilityp(t) for
large t. We found p(t)} exp@r(A2Ac)t# with r53.93
60.13'24; Ac is the critical value ofA ~for fixed f ) above
which transition to chaos occurs forn52, as given by the
curve marked II in Fig. 3. We also found such a distributi
with r'4 for n53 ~destabilization of configuration II*
above curve II in Fig. 3! and for n54 ~destabilization of
configuration III above curve III in Fig. 3!. These probability
distributions suggest that we are dealing with a behavior
lated to type-II intermittency@18,22#.
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