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Intermingled basins due to finite accuracy
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We investigate numerically first a chaotic map interrupted by two small neighborhoods, each containing an
attracting point, and secondly a periodically tilted box within which disorderly colliding disks can reach
different attracting configurations, due to dissipation. For finite, arbitrarily small accuracy, both systems have
basins of attraction that are indistinguishable from intermingled basins: any neighborhood of a point in phase
space leading to one attractor contains points leading to the other attractor. A bifurcation destabilizing the fixed
points or the disk configurations causes on-off intermittency; the disks then alternate between a “frozen” and
a gaslike state.

PACS numbgs): 05.45-a, 68.35.Rh, 47.52:j, 02.70.Ns

Riddled and intermingled basins received considerable afor a finite time since the basins are transients and there
tention in the last few yearfl—14]. Such basins impose exists only one attractor far—oc. In contrast, we show in
serious restrictions on predictability. In fact, an increase irthe present work that there exist systems for which riddled
accuracy of the initial conditions is not of much help in basins caused by finite accuracy are not a transient phenom-
improving predictions, as compared to the less severe chaot®non; in fact, riddling can be quantified for two attractors
systems, in which predictions can be improved by decreasingoexisting att—cc. Moreover, the basins reported now are
initial errors. Moreover, the unpredictability resulting from not only riddled, as in Ref.12], but intermingled. It is also
riddled or intermingled basins affects our knowledge of itsinteresting that the coexisting attractors in the present work
qualitative fate, i.e., we cannot predict the attragibmay  are fixed points or periodic orbits, in contrast to previous
be periodic or chaoti¢ while the unpredictability in a cha- works in which at least one attractor is chadan exception
otic system refers only to the knowledge of the position ininvolving nonchaotic attractors, as in our systems, is given

phase space within the chaotic attactor. b_y a recen_t re_por{6]_ on riqldling of a mixed type, i.e.,
Given the basin®; andB, of two coexisting attractors, riddled basins intertwined with open sets _ _
B, is said to be riddled with respect &, if the probability A quantitative description of riddling is possible with the

of reachingB; is positive and if within any neighborhood of so-called uncertainty exponeat(3,5,7,10,12—1} « is de-
any point ofB, the probability of reachindg, is also posi- termined by fitting the scaling la(e)=e“, wheref(e) is
tive. This means that an arbitrarily small perturbation of athe fraction of pairs %, ,X,+ €,) such thatx, andx,+ ¢, are
_Fl’_?]i_m Ieadintg tﬁ Ons attrz?ctordrr}ay lead tobthe ?tther a(;t.ractc;rin different basins. The,k=1,2, ... N are initial condi-
is property has been found for a number of time-discrete. . — - )
systemg2,5—7], electronic circuitd8,9], differential equa- Tions (F:hosen equidistantly in this wo)flar?d th(Iae, are pfar
tions describing a point mass in a potenfial3,4], coupled tu_rbatlons_chosen randorr_ﬂy such tljua,t| |s_un|formly _d|s-
Roessler systemd 1], or coupled elastic archd40]. As a tributed within[0,e]. For riddled or intermingled basing,
special case, the basins are said to be intermingl&] ifs is close to zero. Examples of reported values are in the range
riddled with respect td,, andB, is riddled with respect to 0-01=a=0.03[5,10,13, as compared to Oda=<0.7 for
B, [2-4]. fractal basins[15] and =1 if the basin boundary is a
In a recent report, it was shown that, for chaotic tran-Smooth curve or surfadds]. _
sients, appearing close to a so-called boundary crisis, there AS @ simple system, chosen so as to easily understand the
exist time-dependent riddledlike basins for finite, arbitrarily Phenomenon, we use a map that corresponds to the logistic
small accuracy; this apparent riddling is indistinguishableeduation except for two small intervals=[X;—4,X
from riddled basins owing to the unavoidable limitations in ™ 6],i=12,6<1:
computational or experimental accurddg]. In that report,

however, riddling appears only if one evaluates the system .- S¥X+(1=8)X; if xpeli, =12
"I Axa(1—x,) if x,e]0,1[ and X, &;.
(1)
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"Electronic address: egoles@dim.uchile.cl For |s|>1, X; and X, are unstable and the map is chaotic.
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FIG. 1. Right: Plot for the determination of the uncertainty ex-
ponent |d log,of (€)/dlog;ge| with the map given by Eq(l), s
=0. Left: Examples of basins corresponding to the plots at the right ) ) )
(abscissasa=0.9, b=0.901; ordinates: coexisting attractoxg FIG. 2. Upper left: Scheme of the mechanical device; the point
=0.2 andX,=0.8). T oscillates around the pivot P between the dashed lires;

= A cos(2ft). Smaller squares: possible stable configurations with
one disk(top row), two disks(second row, three diskgthird row),

gets “trapped” into one of the; and converges there to the and four discglowest row; the disordered modes are illustrated in
corresponding attractof; . In this work, we seX;=0.2 and  the right column; the other modéperiodic orbit$ are denoted by
X,=0.8. Sinced<1, the map may spend a considerableroman numerals.
time as a chaotic transient, which is defined by the logistic
equation, before the trapping into one of theoccurs. All  basin at the lower left of Fig. 1. Within the open intervals in
preimages of;, as determined by this chaotic transient, arethis basin, neighboring points lead to the same attractor, thus
contained in the basin of th€;. Since the Lyapunov expo- decreasing (e). However, fore=10 3, the evaluated point
nent of the mag1) is =1, the average length of a preim- pairs are sufficiently often in different basins, again yielding
age of thd; is §xX 2™, wheremis the number of backward «~0, i.e., apparent intermingling. Note thatcorresponds
iterations. For a calculational accuragy(here é=10"16), here to the resolution of the procedure. This resolution can
the preimages of thi will be indistinguishable from points also be modified by changing the computational accuracy. If,
for m=m.= In(5é/In(2). As an example, we now consider for example,6=10 4, as in the upper plots of Fig. 1, but
5=10"%. In that casem.=41, well below the average num- using an accuracy of 13?2 instead of 10'¢, thena~0 for
ber of iterations needed to reach theby the chaotic map, e=10"2% buta>0 for e<10™ 2.
which is of the order 18 We determined the total length of ~ The phenomena just described apply fef<1. If |s|
all preimages of thé; between 1 andh, backward iterations >1, then theX; are unstable and the iterates are repelled out
to beL~10"3. We thus conclude fof=10"* that approxi-  of the intervald; . However, if|s|— 1 is sufficiently close to
mately 99.9% of the initial conditions consist of points from zero, the iterates may spend considerable time intervals of
the numerical point of view. duration 7 in the I;, with 7— for |s|—1. Note that exit

It is known that the set of all preimages of a point in JO,1 from thel; is described byX,,.1—X;) =s(x,— X;). Thus, if
resulting fromm—o backward iterations of the may,,;  thel; is entered at the iterationand the lifetime withinl; is
=4x,(1—x,) is dense in JO[L (see, e.q.[16]); thus, any 7, then .. ,—X;)=s"(Xc—X;). This equation, along with
subinterval of ]0,1 contains preimages of two arbitrarily the condition for exit (X, ,—1—Xi|<d<|xx:,—X;|) and
chosen points. This property sugge§ts finite mandl;, as  the assumption that the probability of reaching agg I, is
is our casgthat the preimages df; are highly intertwined p(x,)=const (since |;<1), yields the scaling lawp(7)
with those ofl ,. We found numerically that this intertwining «s~7 for r—o; p(7) is the probability for exit withinrt
is so strong for6=10* that successive enlargements of iterations. This scaling is not comparable to any of the
subintervals of ]0,[, as far as computational accuracy al- known laws for intermittencysee[18]), the discrepancy be-
lowed, revealed no open subsets of the basins; we thus olrg due to the discontinuities of our map.
tained qualitative evidence for intermingling. We show an We consider now a physical system, namely(tao-
example for the analysis of a subinterval of J0id this case  dimensional square box containing disks (radiusR) and
in the upper left of Fig. 1. Note that some subsets of theoscillating around a pivot P, as illustrated in the upper left of
displayed interval look open. However, closer inspectionFig. 2. In the present work, we consider1,2,3, and 4.
showed that this is due to the limited number of points ex-The length of the edge of the box was set ®(2+1). This
amined in this interval; in fact, enlargement of these seemehoice resulted from the consideration that a smaller box
ingly open sets again reveals an intertwined structure. Aonsiderably restricts the movement of the disks, while a
quantitative analysis yielded the upper plot at the right oflarger box diminishes the number of collisions and thus re-
Fig. 1. This plot confirms the scaling laf(e)xe® with « duces the disordering that is necessary for intermingling.
=0.0025-0.0001 for =10 *. For comparison, the lower This disordering can still be accomplished with longer edges
plot at the right of Fig. 1 was calculated with more extendedby increasing the input power; however, this requires unrea-
I, namely, with =10 2. We obtainL~0.56, i.e., only sonably long computing times.
44% of the unit interval appears to have intermingled basins; The straight line passing through P and the top point T
starting from these basins, the mean number of iterations idescribes an angle= A cos(27ft) with a vertical line pass-
well abovem,, being 48 in this case. We show part of this ing trough P. Due to dissipation, the disks may come to rest
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FIG. 3. A (ordinatg is the amplitude and (abscissnis the
frequency of the oscillating box in the upper left of Fig. 2. The

configurations shown in Fig. 2 are stable below the curve with the

corresponding roman numerélhe curves for Il and IV deviate by
less than 2% from the curves for*lland IV*, respectively.

at one of the configurations I, 1I,4] 1, IV, IV* andV
shown in Fig. 2. At sufficiently largeA or f, disorder is
maintained, as illustrated in the right column of Fig. 2.
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FIG. 4. Time series showing transitions between the disordered
and the stable modes for two disfsecond row in Fig. 2 f =6 Hz.
Ordinate: total kinetic energy of the diskevaluated from the ve-
locities relative to the box (a) A=14.432°,t,=0; the parameters
are below the curve marked Il in Fig. 3; after a long chaotic tran-
sient, the disks stabilize into configuration (ib), (c), (d) t,=200 s;

The system illustrated in Fig. 2 was simulated using two-intermittent time series for parameters above the curve marked Il in

dimensional molecular dynamidd7]. Each disk was de-
scribed by five independent variables: posit'rf}m velocity
v;, and magnitude of the angular velocliy;|. For the ma-

Fig. 3: increasindA decreases the mean lengths of time intervals in
which the disks are “frozen” near configuration Ili(b) A
=14.445°;(c) A=14.455°;(d) (E\j,~0) A=14.52°.

terial propel’ti'es of the disks and the disk-disk and the diSkfigurations(obtained by interchanging left with nght edges
edge interactions, we used the same parameters and forgethe box are considered as equivalent in Figs. 2 and 3. We

laws as in[19] and[20]. In accordance with the simulations

found that the stability curvedig. 3) for the configurations

in those works, which were optimized so as to fit experimen{V and Il are the same as those that for the configurations
tal observations, we make the following assumptions. ThaVv* and I*, respectively, within an errox2%. This is due

radii of the disks are set here ®=5x102 m and their
densityp to 2.5 10> kg/m™ 3. Two disksi andj only inter-

act if the overlap;=2R—|r;—r;|>0. The repulsive normal
force is given by

FO=[Y& 2~y Vi(v;—v))nIn 2

(Hertz theory with viscoelastic dissipatiof21]) with n
=(ri—r))/|ri—rj|. The disk stiffness is set toY
=10° kgm Y2 s72 and the damping constant toy
=30 kg m Y2571, The shear forcéperpendicular ta) is

—

o (i Vs . . -
FO=— —=min(uFPl,ydv ). 3
|Us|
The first argument describes

to the fact that instability is mainly determined by growth of
perturbations of the uppermost disk in the configuration, and
this disk, including a neighborhood around it, is indistin-
guishable between IV and I as well as between Il and
II*. Above the curve marked I, disorder is obtained for any
v=<4. Below the curve marked V, all configurations coexist
in phase space fow=1,2,3, or 4. Between the curves
marked IV and V, the configurations Il and 1V(for »
=4) and the configurations*land IV (for »=3) coexist in
phase space.

Slightly below each curve in Fig. 3, we observed long
chaotic transients before the configuration marked at the
curve was reached. This is illustrated in Figa4dand is
comparable to the behavior of the one-dimensighBl) map
given by Eq.(1) for |s|<1. In the same way as for the 1D
map, the chaotic transients here cause neighboring initial

the Coulomb slidingconditions to reach different attractors. This is illustrated for

friction and the second one the viscous flow. The sheay,— 4 in Figs. 5a), 5(b), and 5c) for casegwith f=3.25 H2

velocity is vs=v;—v;—[(v;—v)NIN+rNX (0 + @)). Vs
=20 kgs'!; vs=0.45. The interaction of a diskwith an

in which the configurations Ill and ¥ coexist. The initial
conditions are set by first putting the disks in configuration V

edge was computed by assuming a disk placed symmetrand then displacing the uppermost disk along the ddge
cally to i with respect to that edge. The equations werggiven by the abscissas in Figgah 5(b), and %c)] and per-

solved by a Gear predictor-corrector algorithhY] of sixth
order with a time step of 17 s.

pendicularly to the edgéas given by the ordinates in these
figures. In the case of Fig. @), A is so small and thus

Figure 3 shows the plane defined by the control paramtransient chaos is so short that the sizes of the basins are well
etersA andf. The configurationgdefined in Fig. 2 and indi- above calculational accuracy, thus appearing as open sets.
cated by roman numerals at each cyraee unstable above This is an analogous situation to that for the 1D map, as
the corresponding curve and stable below it. Symmetric condlustrated at the lower left of Fig. 1.
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to 2R (an approximate final distance in phase space that is
decisive for alternative configurationithin about 2 s. This
time is approximately five times shorter than the average
lifetime of the chaotic transients in this case.

Figures %d), 5(e), and 5f) correspond to cases for=2
below curve Il in Fig. 3 and =3.5 Hz. We investigate now
the basins of the two symmetric configurations of the two
disks, one at the lower right edge T)land one at the lower
left edge (IF) of the box. The initial conditions were set by
first shifting configuration ff a distance R upward along
the lower right edge, and then displacing the lower disk
along the edgé¢as given by the abscissas in Figgd)s 5(e),
and 5f)] and perpendicularly to the eddas given by the
ordinates in these figuresFor the case of Fig.(8), A is so
low and thus the chaotic transients so short that configuration
IR is reached for almost all initial condition@s basin is

FIG. 5. (a),(b),(c) Basins for the configurations Iiblack and  shown black The definition of riddling is not fulfilled in this
IV* (white) of four disks(see lowest row in Fig.2f=3.25 Hz.(a) ~ numerical analysis because the probability of reachihdgsl|
A=22.25° (open sets (b) A=22.5° (intermingledlike basin (¢)  indistinguishable from zerfthe basin consists of the isolated
Enlargement of a small rectangle withih). (d),(e),(f) Basin for  white points in Fig. &d)]. For the case of Fig.(8), Ais large
configuration II(shown blacb( and of its symmetric one on the left enough and thus the chaotic transients are |ong enough to

edge(shown whitg. f=3.5 Hz.(d) A=25° (one basin consists of yje|d again apparent intermingling with=0.0013+0.001
isolated points within the other onde) A= 26.3° (intermingledlike (evaluated for 1012R< e< 10_3R).

basing. (f) Enlargement of a small rectangle withiite).
(@),(b),(d),(e) Abscissa (0,610 ° m) and ordinate (0,10 m) are
initial displacements of one disk, as described in the text.

Slightly above each curve in Fig. 3 we obtain intermittent
behavior, in which a chaotic, gaslike mode alternates in a
disorderly way with a “frozen” state, the latter correspond-
ing to the configuration marked on the curve. We illustrate

sient chaos is long enough to yield basins having size%hIS in Figs. 4b), 4(c) and 4d) for »=2. This is comparable

: the dynamics of the 1D map given by EQ) for |s|
smaller than the calculational accuracy. As for the 1D map0 . ' . .
(see the upper part of Fig),lone here obtains basins that >1. Due to the high degree of disorder in the chaotic bursts,

cannot be distinguished from intermingled ones, as illus /€ could not discriminate well between low amplitudes of

trated qualitatively by the enlargement in Fidch For Fig. thle; (;)kllaotlct.retgm}e anld Ie;mlnar Fer'ogif' TZ'Str:esu“fed in-un-
5(b), we calculated the uncertainty exponent to he reflable statistical evaluations of smai) an us of(7).

_ ; : However, we could well determine the probability+) for
=0.0035-0.002 (evaluated for nine orders of magnitude . a
10 ?’R<e<103°R). We determined the maximum large 7. We found p(7)= exgdp(A—AJ7] with p=3.93

Lyapunov exponenk ., (using base Rby averaging over +0.13~—4; A, is the critical value ofA (for fixed f) above

1000 chaotic transients before their breakdown into one oYVh'Ch transition to chaos occurs for=2, as given by the

the stable configurations. For this, we first normalized the"U've marked Il in Fig. 3. We also found such a distribution

variables—dividing by their averages in time—and then de-Wli)th p=4 for” ”.:i. (deSta%i”fa“Of 4°f dco?ﬁg.ﬁratti.on Al f
termined the average stretching (periodically normalizeg above curve Il in Fig. Band for »=4 (destabilization o

distances between a reference trajectory and nearby traject gnf!gur_ann lll above curve Il in F|g.)3The_se probabll_lty
ries (see, e.g. [18). We obtained .= 2324 istributions suggest that we are dealing with a behavior re-
, .g., . max .

+ 0.06 s'1. This means that a perturbation having the sizelated to type-ll intermittency18,22.

of the calculational accuracy (16 increasegon average We thank FONDAP, Chile, for financial support.

In the case of Fig. ®), A is large enough and thus tran-
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